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Abstract 
 
Verification of extreme event forecasts has received surprisingly little attention with the 
exception of the work on threat scores for deterministic forecasts of binary events (e.g. 
threat scores). There is an urgent need to develop specific approaches better suited for the 
verification of such rare events, in order to assess the performance of current operational 
ensemble forecasting system. 
 
This report attempts to establish a simple framework for verification of certain types of 
extreme event and then discusses some of the possible approaches in the hope that this 
will lead to more developments in this important area of verification.  
 
This report is deliverable D5.4 of the WP5.3 verification work package in the EU project 
ENSEMBLES (http://ensembles-eu.metoffice.com). It is intended as a discussion paper 
rather than a final prescription and so comments would be most appreciated.  
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1. Aim  
 
Accurate prediction of rare high-impact events represents a major and pressing challenge 
for weather and climate forecasting. Timely forecasts of extreme meteorological events, 
such as tropical and extra-tropical storms and heat waves/droughts, can be used to inform 
decisions that help mitigate large economic losses and reduce human morbidity and 
mortality.  
 
However, assessment of the skill at forecasting such events is problematic primarily 
because of the rarity of such events. For rarer events, many of the standard scores tend to 
trivial limits such as zero (e.g. the equitable threat score, the Brier score, and many 
others). In addition, the sampling uncertainty on estimated scores is large for rare events 
due to having few events in the verification period. In addition, some extreme events can 
be difficult to observe due to their small spatial scales (e.g. tornadoes) and observations 
can be error-prone (or even impossible!) due to the extreme meteorological values (e.g. 
wind speeds during severe hurricanes).  
 
Despite or perhaps even because of these challenges, verification of extreme events has 
received surprisingly little attention with the exception of the work on threat scores for 
deterministic forecasts of binary events (see threat scores in Chapter 3 of Jolliffe and 
Stephenson, 2003). There is potential for developing specific approaches better suited for 
the verification of rare events. Such approaches urgently need to be developed to be able 
to assess the performance of current operational ensemble forecasting systems.  
 
This report attempts to establish a simple framework for verification of certain types of 
extreme event and then discusses some of the possible approaches in the hope that this 
will lead to more developments in this important area of verification. No specific time 
scales are mentioned since verification of extreme events is applicable to weather and 
climate forecasts at all possible lead times.  
 
The report is deliverable D5.4 of the WP5.3 verification work package in the EU project 
ENSEMBLES (http://ensembles-eu.metoffice.com). It is intended as a discussion paper 
rather than a final prescription and so any comments would be most appreciated (email: 
d.b.stephenson@reading.ac.uk). 
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2. Definition of extreme events 
 
Mankind is vulnerable to severe (also now referred to as high-impact; by e.g. WMO 
THORPEX programme) weather/climate events that cause damage to property and 
infrastructure, injury, and even loss of life. Although generally rare at any particular 
location, such events cause a disproportionate amount of loss. Prediction of such high-
impact events can improve decision-making and disaster planning that then helps to 
mitigate some of the losses.  
 
Severe events have high impacts generally because they are associated with extreme 
values of meteorological variables such as precipitation (e.g. floods), wind speeds (e.g. 
cyclones), temperatures (e.g. heat waves), etc. Such extreme events are multi-faceted and 
have various attributes such as: 
 

• rate (frequency) of occurrence; 
• magnitude; 
• temporal duration; 
• spatial scale; 
• multivariate dependencies. 

 
For example, a category 5 hurricane is quite rare, has large magnitude surface wind 
speeds, has a generally large spatial scale (with the exception of certain small events such 
as Hurricane Camille in 1969), and develops over synoptic time scales from hours to 
several days. In addition, the severity of such events can also depend on the combination 
of extreme behaviour in more than one variable, for example, much hurricane damage is 
due to extreme precipitation as well as extreme wind speeds. For example, a severe ice 
storm can involve conditions on all three variables: temperature, wind and precipitation 
amount. 
 
IPCC (2001) defines complex extreme events as “Severe weather associated with 
particular climatic phenomena, often requiring a critical combination of variables’’. 
Prediction of such complicated and often rare spatio-temporal systems represents a major 
and pressing challenge for weather and climate forecasting.  
 
In order to simplify the problem, it is useful at first to neglect certain attributes such as 
temporal duration, spatial scale, and multivariate dependencies. IPCC (2001) defines a 
simple extreme event to be “Individual local weather variables exceeding critical levels 
on a continuous scale”.  This is a very simplified but often employed definition of an 
extreme event. Meteorological variables are invariably recorded and stored on computers 
at regular discrete time intervals rather than continuously and so a typical time series 
might look something like this: 
 
 

 Page 4 of 14  



0 10 20 30 40 50

10
20

30
40

Time

Te
mp

era
tur

e

 
Figure 1: Artificial example of simple extremes in 50 temperature values generated 
randomly from a Normal distribution with mean of 20oC and standard deviation 7oC. The 
threshold is at 25oC. Example generated using the R language commands: 
plot(rnorm(50,20,7),type="h",xlab="Time",ylab="Temperature"); abline(h=25) 
 
Several heat wave indices have been developed based on temperature exceedances above 
25oC (e.g. the NCDC/STARDEX indices). Temperatures above this threshold can cause 
human heat stress and can lead to extreme health situations. In the artificial example 
shown in Figure 1, the exceedances above the threshold temperature of 25oC (the extreme 
events) occur at random times (points) and have randomly varying exceedances above the 
threshold value (marks). Such series are not amenable to the usual methods of regular 
time series analysis developed for a sequence of randomly varying values sampled at 
regular time intervals. However, such records can be considered to be a realisation of a 
stochastic process known as a marked point process – a process with random magnitude 
that occurs at random points in time (see Diggle, 1983; Cox and Isham, 2000). Strictly 
speaking, this is a special type of marked point process in which the points occur on a 
discrete set of regularly spaced times (e.g. daily values) rather than at any possible time. 
The occurrence of an exceedance in such cases can be modelled using a discrete-time 
Markov chain (see Section 5.2 of Lindsey 2004).  
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Point process methods have been widely used in various areas of science, for example, in 
providing a framework for earthquake risk assessment and prediction in seismology 
(Daley and Vere-Jones, 2002). Point process methods can be used to explore and 
summarise such records and are invaluable for making inference about the underlying 
process that gave rise to the record. Broadly speaking, this is performed by considering 
statistical properties of the points such as the number of events expected to occur per unit 
time interval (the rate/intensity of the process), statistical properties of the marks (e.g. 
how the average magnitude of the marks has changed over time), and joint properties 
such as how the marks depend on the position and spacing of the points, the magnitude of 
preceding events, etc.  
 
There are two main types of approach for estimating the rate of a point process: the 
counting specification based on counting the number of points in fixed time intervals, and 
the interval specification based on estimating the mean time interval between successive 
points (see p.11 of Cox and Isham, 2000). The simplest counting specification involves 
dividing the time axis into a set of non-overlapping equally spaced bins and then counting 
the number of points that fall into each bin. This approach gives rather noisy results due 
to the sharp bin edges. More efficient and smoother rate estimates can be obtained using 
smooth local weighting based on a smooth kernel function rather than a sharp-edged bin. 
Such an approach has recently been used to investigate extreme flooding events in 
Eastern Norway as observed in paleoclimatic lake sediments (Boe et al., 2006).  
 
For the sake of simplicity, in the following, we will only consider simple extreme events 
defined at regularly spaced time intervals. This is a necessary first step before addressing 
the more complex temporal duration, spatial scale, and multivariate attributes of extreme 
events that are often ignored when issuing forecasts of severe events. Despite the 
complex interaction of meteorological variables, meteorological hazards are often 
perceived as simple extremes in financial losses by the insurance industry and 
governments. In other words, despite their meteorological complexity, severe events can 
be defined as simple extreme events in variables such as total insured loss.  
 

3. Types of extreme event forecast 
 
Several different types of forecast can be issued for simple extreme events defined by 
exceedance of a variable above a pre-defined threshold: 
 

1. Occurrence of Exceedance forecasts 
Either deterministic or probabilistic forecasts of whether an exceedance will 
occur. Deterministic forecasts of whether or not an extreme event will occur 
within a specified time period. For example, temperature exceeding 25oC 
tomorrow for a given location. Probabilistic forecasts of the binary event X 
defined by the variable exceeding a pre-defined threshold (Y>u). At high 
thresholds, the series of X will contain a lot of zeroes (because the event is rare) 
and the forecasts p will generally be small.  
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2. Number of Exceedance forecasts 

Either deterministic forecasts of the number of extreme events or probabilistic 
forecasts of the distribution of the most likely number of extreme events that will 
occur within a specified time period. For example, the most likely number or a 
probability distribution of the number of hurricanes making landfall in the U.S. 
within a season.  
 

3. Time-To-Next-Exceedance forecasts 
Rather than forecast the number of events in a fixed time period, forecast the time 
interval (or distribution of time intervals) before the next extreme event is 
observed. This type of forecast has so far been rarely used in weather and climate 
forecasting. The next category 5 hurricane to make US landfall has a probability 
of 0.9 of occurring within the next 3 days.  
 

4. Distribution of the Exceedance magnitude forecasts 
Forecasts of the predictive distribution of the excesses (the marks). These can be 
issued as either quantiles of the excess for a given exceedance probability (return 
levels), the reciprocal of the exceedance probability P(Y>u) for a given excess 
(return periods), or  alternatively a set of estimated  distribution parameters for 
the predicted distribution of excesses (e.g. scale and shape parameter estimates for 
a Generalised Pareto Distribution model of the excesses). For example, a forecast 
for tomorrow of 10-year (specified return period) wind speeds exceeding 164m/s 
(forecast return level).  
 

There are several important reasons why it is advisable to issue probability forecasts for 
rare events rather than deterministic forecasts. Whereas deterministic forecasts issue a 
specific value or category that is considered to be most likely to occur in the future and 
provide no estimate of forecast uncertainty, probabilistic forecasts make probability (risk) 
statements about the chance of different events occurring. Several reasons for preferring 
probabilistic forecasts are that: 

• Future extreme events cannot be predicted with certainty and it is legally unwise 
to claim that there is no uncertainty in the forecasts; 

• Probability forecasts are essential for quantitative assessment of risk; 
• Probability forecasts allow different decision-makers (forecast users) to make 

their own optimal decisions, whereas deterministic forecasts are essentially a 
decision already made by the forecaster; 

• Probability forecasts of rare events are harder to hedge for a specific user than are 
deterministic forecasts (see Murphy 1991b).  

 
However, there are several difficulties when issuing probability forecasts such as: 

• more information needs to be communicated so the forecasts can be difficult to 
communicate concisely (e.g. in short television broadcasts); 

• the understanding and perception of probability and risk varies enormously from 
person to person; 
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• not all users want to make optimal decisions – they often prefer the forecaster to 
issue a definitive statement about what will happen (despite the fact that this is 
obviously impossible!).  

 
In order to surmount these difficulties it is necessary for forecasters and users to work 
together at improving communication and understanding of what they are attempting to 
achieve. 

 
 

4. Verification of extreme event forecasts 
 
Some possible scores for the different types of simple extreme forecast are summarized 
in Table 1. Much work needs to be done to improve the gaps in this table.  
 
Type of Forecast Deterministic Probabilistic 
Occurrence of exceedance Threat scores, EDS, ROC Brier score, Mean Abs 

score, logarithmic score 
Number of exceedance MSE of square root of 

counts 
??? 

Time-to-next-Exceedance MSE of square root or log 
of time intervals 

??? 

Distribution of exceedance --- Coverage (see text) 
Interval scores 

 
 
Table 1: Summary of scores that can be used for the different types of extreme event 
forecast.  
 
Deterministic forecasts of occurrence of exceedance can be assessed using the many 
different approaches developed for binary events (see Chapter 3 of Jolliffe and 
Stephenson, 2003). In particular, the threat score,  and its variant the equitable threat 
score, have been widely used (and reinvented!) for rare events because of their ability to 
be defined even if one doesn’t know the number of correct no-event forecasts (see 
Doswell et al. 1990; Schaefer, 1990; Murphy, 1991a; Marzban, 1998).  
 
Probability forecasts of exceedance can be assessed by probability scores such as the 
Brier score, the mean absolute score, or even the more penalizing  logarithmic score (if 
probabilities of zero are never issued).  
 
Number of events is generally a positively skewed non-normal distribution of discrete 
values and so appropriate measures need to be used rather than simple measures such as 
mean squared error that is more suitable for normally distributed variables. Skewness can 
easily lead to large values that dominate the score and so either more resistant measures 
should be used (e.g. mean absolute error) or the counts should be normalized (e.g. by a 
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square root transformation) before verification.  Time-to-next-event forecasts are rarely 
issued by weather and climate forecasters but such variables would also be strongly 
positively skewed and non-normal and so would also necessitate care in verification.  
 
Return level forecasts can be considered to be the lower limit of an interval forecast in 
which the upper limit is the maximum value attainable by the observed variable. One 
thing to verify for such forecasts is the coverage: the fraction of times when the observed 
event falls above the forecast values should be close to the specified exceedance 
probability.  This is a measure of forecast reliability not resolution –good forecasts should 
have good reliability yet should also give high return levels on occasions when extreme 
events occurred. 
 
It should be noted that no single score is optimal for all people; users are often interested 
in very different aspects of the forecast system than developers of researchers.  Users 
often want scores that show how how much money can be saved by making more optimal 
decisions based on the forecasts. Alternatively, users may want to protect themselves 
from damagingly large losses by using forecasts to take out protective cover. This is 
especially the case for extreme events where the costs of taking preventative action are 
generally much less than the losses that can be incurred if no preventative action is taken 
and the extreme event occurs (e.g. the costs and losses for New Orleans for Hurricane 
Katrina). An interesting limit occurs for rare catastrophic events that have vanishing 
probability of occurrence and vanishing cost/loss ratios – the value of forecasting systems 
for such events demands more attention.  
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5. Problems and possible new approaches  
 
Conventional verification scores can have several problems when used to assess forecasts 
of simple extreme events:  
 

1. Trivial non-informative limits of skill scores going to either 0 (e.g. threat scores) 
or 1 (e.g. proportion correct) for rarer events. The majority of skill scores 
traditionally used to verify forecasts of rare binary events, such as the Equitable 
Threat Score and the Brier score, have the disadvantage that they all tend to zero 
for vanishingly rare events. This base-rate effect creates the misleading 
impression that rare extreme events cannot be forecast successfully no matter 
which forecasting system is used; 

2. Large sampling uncertainty due to infrequent occurrence of the events. Because of 
the rarity of the events, much longer verification periods are needed to obtain 
reliable verification statistics. For extremely rare events (e.g. rarer than 20-year 
return periods) even historical records would be too short to allow a meaningful 
verification of the forecasts (if they had been made over the whole period!). The 
amount of data you need to verify depends strongly on  the predictive power of 
the forecast.  However, larger data sets also bring with them the potential problem 
of non-stationarity/inhomogeneity; 

3. Verification statistics can have strange sampling properties when they are based 
on contingency tables having small (or even zero) cell counts (sparse tables; see 
section 9.8 of Agresti (2002). Sparseness in bin counts can also cause stratified 
statistics to be extremely noisy and non-informative (e.g. reliability diagrams);  

4. Susceptibility to large biases. Rare event forecasts are often hedged to avoid 
missing warnings of severe events and this often leads to a large frequency bias; 

5. The presence of extreme values can strongly influence statistics used to 
summarise exceedances. Non-resistant statistics such as mean and standard 
deviation can be unduly influenced by the presence of large outlier values.  

 
Several approaches can be envisaged to try to alleviate such problems. One possible 
approach is to try to reduce the rarity of the event by considering large spatial regions 
and/or longer time periods. However, when doing this kind of pooling, one should take 
account of possible variations within either the spatial domain or time period. This 
requires the development of statistical models that have spatio-temporal explanatory 
variables. Pooling over inhomogeneous data can inflate skill (Hamill and Juras, 2006; 
submitted).  
 
The trivial limit of scores can be avoided by using more appropriate association measures 
for extreme events such as the Extreme Dependency Score proposed by Stephenson et al. 
(2006). Stephenson et al. (2006) developed a simple asymptotic model for rare binary 
event forecasts and then used it to demonstrate that the vanishing of the scores is due to 
their explicit dependence on the base-rate. Inspired by recent work in bivariate extreme 
value theory (Coles et al. 1999), they proposed an alternative new skill score, known as 
the Extreme Dependency Score (EDS), for the assessment of skill in deterministic 
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forecasts of rare binary events. The EDS does not depend on the bias of the forecasting 
system and has the desirable property that it cannot be improved by hedging the forecasts 
(i.e. under- or over-forecasting the occurrence of the event). Despite scores vanishing for 
rare events, the relative skill as judged by association measures such as the odds ratio can 
actually improve compared to climatological forecasts (Goeber et al. 2004). The relative 
improvement over climatology has also been recently used to develop operational 
warning systems for extreme events (Lalaurette, 2003).  

 
Another approach that has not yet been attempted (personal communication, Dr Chris 
Ferro), would be to infer the skill of rarer more extreme events from the skill of less rare 
moderately extreme events. Such extrapolation requires the use of regularity assumptions 
similar to those used in extreme value tail distributions such as Generalised Extreme 
Value and Generalised Pareto distributions. However, such assumptions are not valid for 
extreme  weather that does not exist in less extreme forms (e.g. tornadoes, hurricanes), or 
that are qualitatively different due to non-linear feedbacks (e.g. heat  waves, fog). In 
addition to giving some indication of skill for the higher thresholds, issuing forecasts of 
exceedances at lower thresholds can provide forecasters with useful experience and 
feedback in forecasting and interpreting more extreme events (personal communication, 
Kees Kok). In order to have sufficient numbers of events for longer range forecasting 
systems such as current operational seasonal forecasting systems, forecasts are issued for 
(moderate) extreme events that are not very rare. For example, tercile categories defined 
by the 0.15 and 0.85 empirical probabilities (the 6-year return period) are currently used 
at the Met Office and ECMWF for defining such events as extremes in summer mean 
temperatures (personal communication, F.J. Doblas-Reyes). 
 
Various methods have been developed to deal with sparse contingency tables yet these 
have not yet been employed in verification studies. For example, one simple smoothing 
approach is to add a small constant to each cell count that can help reduce bias in 
measures of association (skill) such as the odds ratio (see section 9.8.7 of Agresti (2002)). 
More work needs to be done on developing and employing verification measures that are 
less sensitive to sparse counts and also large outlier values in excesses.  
 
Surprisingly, many of these approaches have not yet received much attention from the 
atmospheric science community. There is much still to be done on the verification of 
extreme event forecasts.  
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6. Summary 
 
This report has briefly defined what is meant by extreme events and has then considered 
how one could issue forecasts for a sub-class of such events known as simple extreme 
events. Even for simple extreme events, there are several different aspects that can be 
forecast either in a deterministic manner or probabilistically. Problems with conventional 
scores for such events have been presented such as trivial limits, sampling uncertainty, 
bias, and frailty. Several possible approaches have been presented for how one might try 
to alleviate such problems. With the advent of higher-resolution forecasting systems and 
the growing need for forecasts of high-impact events, there is a pressing need for more 
work on such novel verification approaches.  
 
These problems will be addressed further in the ENSEMBLES project by partners in the 
validation research theme (RT5). More careful attention needs to be given to statistical 
inference of scores for extreme events and perhaps new approaches could be developed 
for the verification of probabilistic forecasts of marked point processes.  
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