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Abstract 

This report attempts to address the problem of formulating probabilistic 

predictions of extreme events at seasonal and interannual time scales using ensembles 

of dynamical simulations from multiple ocean-atmosphere coupled models. Although 

the prediction of extreme events in seasonal and interannual time scales can benefit 

from the large body of research carried out for the short-range prediction and climate 

change problems, its own unique requirements and difficulties have to be thoroughly 

addressed. In particular, the need of clear definitions of relevant extreme events for 

those time scales and the high importance of appropriate calibration and verification 

methods are discussed. 

The report is intended as a discussion paper rather than a list of results and 

recommendations and so comments would be most appreciated.  

1. Introduction 

Recent natural disasters have highlighted the fact that human populations 

around the world remain at risk of certain weather and climatic events. Such events 

happen infrequently and tend to occur with little or no warning, sometimes with 

devastating impact. Despite modern technology, populations even in the most 

developed countries may be quite vulnerable to them, as hurricane Katrina in 2005 

and the heat wave of Western Europe in July-August 2003 have shown. Such 

vulnerability should not be surprising given the evident capacity of extreme events to 

overwhelm normal protection mechanisms. Vulnerability is a very complex concept 

that takes into account many aspects of human and environmental systems, but it 

depends somehow on the risk of a certain event, in particular extreme events, to 

happen.  

There are several scientific aspects of extreme events that have attracted 

attention, among which there is the detection, the analysis of the mechanisms 

involved, the understanding of the factors that modify the impact on human 

populations, and the prediction of the risk associated. These aspects have been 

addressed differently depending on the time scale involved. Weather and climate 

extremes can involve various time scales, from tornadoes and hail storms lasting only 

minutes or hours to droughts of years’ duration. Concerning prediction, an important 
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effort has been carried out to predict extremes with a lead time of a few hours or days 

(Lalaurette, 2002) or to determine the risk of change in extreme event occurrence 

under different climate change scenarios (Palmer and Räisanen, 2002; Barnett et al., 

2006; Benestad, 2006). However, not much effort has been carried out to predict 

extremes in intermediate time scales such as seasonal and interannual, even if such 

information would be of high value for the preparedness and planning of early 

warning systems, and the understanding of adaptation and resilience factors and 

system responses to reduce negative impacts. To bridge this gap, this document aims 

to discuss issues related to the formulation of forecasts of extreme events on the 

seasonal-to-decadal (s2d) time scale. 

The note is organized as follows. Section 2 describes the type of events that 

can be considered extreme events in s2d time scales. Section 3 summarizes the 

characteristics of the dynamical forecast systems used in s2d forecasting. Section 4 

addresses practical problems in the formulation of probabilistic forecasts, while 

Section 5 introduces the requirement of an adequate forecast quality assessment 

process. Section 6 summarizes the main issues and introduces the future challenges of 

the problem. 

2. Extremes in seasonal-to-decadal time scales 

There is no clear definition of what can be considered an extreme event in s2d 

time scales. For instance, while a large seasonally-averaged anomaly can be 

considered as a climatic extreme (with respect to a specific percentile of the 

climatological distribution) event (e.g. Weisheimer and Palmer, 2005), a succession of 

rare weather events, such as a long hot spell within a season, is also of relevance even 

if the seasonally-averaged temperature anomaly is not particularly large. Both 

examples refer to different characteristics of an extreme event. While the first 

example considers the interannual variability of the seasonal average, the other one 

looks at the extreme properties of the intraseasonal variability in a certain period. In 

addition, as the final value of s2d predictions is estimated by the users of the climate 

information (Thomson et al., 2006), extremes defined by users are of great 

importance. Users may need to define certain events that, even if they cannot be 

considered as extreme from the meteorological or climatological point of view, have 

anomalously high impact in their systems. For instance, short episodes of high 
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temperature (~30°C) around the flowering time are expected to strongly affect 

seasonal yields of wheat or groundnut in India (Challinor et al., 2005). 

Extremes can be classified in simple events, i.e. events based on a single 

variable, or complex events, which involve a critical combination of variables 

associated with a particular event (McGregor et al., 2005). Values of temperature or 

precipitation above a certain threshold are common examples of simple extremes, 

while a specific storm with moderately strong winds, associated with low 

temperatures and some form of strong precipitation could be considered as a complex 

extreme. End-user extremes can also be classified as simple, if only one specific end-

user variable is used, or complex, if an end-user extreme event is analyzed in terms of 

the combination of the different meteorological or climatological variables that 

increase their vulnerability and exposure. Given that the analysis of extreme events in 

s2d time scales has been relatively scarce up to now, to easy the task we will 

concentrate on simple events in the rest of this paper. 

The consideration of certain s2d situations as extreme events ought to take into 

account the specific time scale. For instance, while a temperature anomaly of 5 K in 

an extra-tropical region can be extreme for a seasonal average, it might not be so for a 

specific week or month because the frequency distribution of the same variable using 

weekly, monthly or seasonal averages is different. As another example, a continuous 

succession of five years of low precipitation could be considered an extreme event, at 

least from the socioeconomic point of view, even if the average precipitation over the 

period is similar to a sample with three very dry and two normal years. In a more 

general way, heat and cold waves, using either monthly or seasonal averages 

(Beniston, 2004; Schär and Jendritzky, 2004; Schär et al., 2004), clusters of tropical 

or extra-tropical storms (Kelman, 2001; Vitart and Stockdale, 2001), anomalous 

persistence of some very stable situations such as blocking highs (Cassou et al., 2005; 

Scherrer et al., 2005) or long-lasting (several years) droughts measured as a strong 

rainfall deficit (Woodhouse et al., 2002) can all be considered as extreme events at the 

s2d time scales. To clarify our definition of extreme events, we consider the 

simulation and prediction of two types of variables: 

• Averages of a meteorological variable over a certain period, e.g., the 

mean seasonal temperature in a region. 
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• Clusters of anomalous, in the sense of either exceeding a certain pre-

defined threshold or as meteorological/climatological entities, events. 

Examples of this type of variable are the exceedances of a 30 mm/day 

threshold over a calendar year or the number of tropical cyclones 

within a season. 

Once the s2d variable is defined, extreme events are those for which it has a 

value either above or below a given percentile chosen preferably near the tail of its 

distribution. The distinction between extreme events in variables based on time 

averages and those based on exceedances over a certain threshold is due to the fact 

that most of the work in s2d forecasting has been carried out using seasonal or annual 

means of meteorological variables (Massacand, 2003; Cassou et al., 2005), while 

useful information about processes might be obtained by defining seasonal or annual 

variables defined as the exceedances of a certain threshold or the number of 

meteorological entities (e.g. cyclones). In fact, both types of variables are somehow 

related because large mean anomalies can also be interpreted as the temporal 

integration of changes in the occurrence of entities of a shorter time scale. 

As stated above, many of the problems of how to formulate forecasts of 

extreme, high impact climatic events in s2d time scales and whether there is any skill 

in their prediction remain unanswered. Using the methodology adopted in other 

disciplines and time scales to detect extreme events, the assessment of their 

predictability requires a clear definition of the event, the characterization of the main 

features in homogeneous datasets and a detailed analysis of the physical mechanisms 

involved. These steps should be undertaken not only in the observational datasets, but 

also in the simulations made with the dynamical models used to formulate the 

forecasts. The ability of these models to adequately simulate if not the magnitude of 

the extreme events, at least the large-scale conditions associated to them, needs to be 

thoroughly assessed. Therefore, before discussing the predictability of extreme events, 

a brief description of the tools used to issue dynamical predictions of climate in s2d 

time scales is offered next. 

3. Seasonal, interannual and decadal forecasts 

Seasonal time scale dynamical climate predictions are now made routinely at a 

number of operational meteorological centres around the world, using comprehensive 

 6



 

coupled models of the atmosphere, ocean, and land surface (e.g. Stockdale et al., 

1998; Mason et al., 1999; Kanamitsu et al., 2002). Coupling the different components 

allows for complex feedbacks, a feature expected to be relevant in the simulation of 

most extreme climatic events. In contrast to seasonal forecasting, interannual and 

decadal forecasting are at their earliest stages (Boer, 2000). Preliminary assessments 

show that there are signs of ensemble-mean skill in near-surface temperature in multi-

annual time scales (Smith et al., 2006), which is partly due to the impact of the 

increase of greenhouse gases in the atmosphere. Recent results point out that the 

effects of anthropogenic climate forcing need to be included in all these forecast 

systems (Doblas-Reyes et al., 2006). 

In spite of the fact that predictable signals can arise from atmosphere-land-

ocean interaction, the overlying atmosphere is intrinsically chaotic. This implies that 

predicted day-to-day evolution of weather is necessarily sensitive to initial conditions 

(Palmer, 1993). In practice, the impact of such sensitivity can be determined by 

integrating forward in time ensembles of forecasts of a model, the individual members 

of the ensemble differing by small perturbations to the starting conditions. However, 

if uncertainties in initial conditions are the only perturbations represented in a climate 

forecast ensemble, the resulting measures of predictability will not be reliable because 

the model equations are also uncertain. At present, there is no underlying theoretical 

formalism from which model uncertainty can be estimated (Palmer et al., 2005) and 

more pragmatic approaches must be sought. One such approach relies on the fact that 

global climate models have been developed somewhat independently at different 

climate institutes, using different numerical approaches to represent the climate 

dynamics and applying different parameterizations of physical processes. An 

ensemble comprising such quasi-independent models, referred to as a multi-model 

ensemble (Palmer et al., 2004), can be used to sample model uncertainty. Other ways 

to represent model uncertainty are based on the stochastic physics (Palmer, 2001) or 

the perturbed-parameter (Murphy et al., 2004) approaches. All these methods are 

being investigated in ENSEMBLES by performing co-ordinated experiments for 

which a large set of ensemble forecasts are carried out for a long period in the past. In 

all the forecast systems mentioned above, a forecast ensemble valid for a specific time 

is computed, while only one observation is available at a given time. This means that 

simulated samples are somewhat larger than observed samples, although the number 

of independent events is the same. 
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Dynamical predictions do not automatically provide a simulation of an 

observable due to model systematic error (Stockdale, 1997; Marzban et al., 2006). In 

particular, an ensemble may reflect errors both in statistical location and dispersion 

(Wilks, 2006). Biases in simulated variables (understood as the difference in statistical 

properties between model simulations and observations) are a consequence of model 

systematic error, which is due to the model phase space being different to the actual 

climate system phase space. The presence of systematic error also affects the tails of 

the distributions. In a multi-model context, the systematic error is, in addition, 

significantly different between the single models. It is therefore necessary 1) to 

estimate these errors in the simulations before formulating any forecasts to understand 

the limitations of the dynamical models and 2) to design a probabilistic model to 

convert the model output into probabilistic predictions of observables in a process 

known as calibration. 

The calibration (Stephenson et al., 2005) and the assessment of the forecast 

quality (Hagedorn et al., 2005) of s2d forecast systems require a comprehensive set of 

forecasts over a substantial period of the past. This means that the dynamical models 

commonly used in climate forecasting have a fairly low horizontal resolution (~250 

km), which might compromise the characteristics of the extreme events simulated by 

the model when compared to those observed in the actual climate system. This is 

more so because some s2d extreme events such as an abnormal number of convective 

events in a region might be of very small spatial scale. Besides, low resolution is also 

an undesirable feature because most of the end-user applications require high-

resolution data to force their models. As a consequence, calibration methods to 

formulate probabilistic forecasts of extreme events should also deal with an increase 

in spatial resolution in a process known as downscaling (Coelho et al., 2006). 

4. Prediction of extremes in seasonal, interannual and decadal time 

scales 

While both deterministic and probabilistic predictions of extreme events can 

be issued using ensemble simulations with dynamical models, this note will focus 

only on the second type. The reason is that a probabilistic approach can take full 

advantage of the information contained in the ensemble, especially for events that 

happen rarely. 
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Predictability and forecast quality assessment of extreme events for s2d time 

scales is rarely found in the literature or in operational forecasting centres. Extreme 

events such as heat waves, understood as a number of consecutive days during which 

threshold temperatures (e.g. 32°C for London) are recorded, or high precipitation, 

defined as a series of days with precipitation above a certain threshold (e.g. 30 

mm/day in the Netherlands), are expected to have a certain degree of predictability, 

although no forecasts are available yet. Some of the scarce operational examples of 

extreme event forecasts available consider situations that would not be regarded as 

extreme in other time scales. For instance, the Met Office issues monthly probability 

forecasts for the upper and lower quintile categories: 

http://www.metoffice.com/monoutlook/index.html 

while ECMWF issues seasonal predictions for the upper and lower 15th percentile 

category: 

http://www.ecmwf.int/products/forecasts/d/charts/seasonal/forecast 

One difficulty encountered when studying extremes is that the statistical 

analysis is very limited by a low number of events for finite and relatively short 

datasets. Although skilful predictions of a record event (i.e., one that happens only 

once in the available sample) would be very useful, it would be impossible to estimate 

its forecast quality. Every prediction requires an estimate of its quality to be integrated 

in an end-user system. As with any statistical analysis, a robust forecast quality 

assessment of a forecast system requires large enough samples. Therefore, the choice 

of the extreme event categories mentioned in the operational examples above is 

mainly determined by the need of a large enough number of events (25% of the 

sample size in the case of quartile categories). This sort of not-so-extreme categories 

has also been employed by end users. For instance, Thomson et al. (2006) show that 

seasonal predictions of quartile categories of both seasonal precipitation and annual 

malaria incidence based on multi-model dynamical forecasts are useful and more 

skilful than categories closer to the median. 

As stated in previous sections, a previous analysis of the ability of the 

dynamical models to simulate extreme events in a similar way as in the real climate 

system is recommended. This includes not only a robust estimate of the changes in 

probability distributions of the meteorological variables with methods similar to those 

suggested in Ferro et al. (2005), but also an analysis of the physical causes of the 

extreme events, either in terms of the large-scale (Cassou et al., 2005) or surface 
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(Ferranti and Viterbo, 2006) conditions forcing the event. Once again, these two tasks 

have been seldom undertaken using s2d simulations. There is a pressing need to 

provide users of s2d forecasts with this sort of information. 

In the examples of extreme event forecasts mentioned, forecast probabilities 

are computed as the proportion of ensemble members that are beyond the percentile 

that defines the category. In spite of being widely used, this method does not take into 

account important aspects of the model systematic error discussed in the previous 

section. The problem of creating sound probability forecasts is not simple. For 

instance, the size of the seasonal forecast samples available to date is typically 30 

years, which proves to be too small to fit complex models for calibration and 

combination. In spite of that, some methodologies have been devised and successfully 

tested to formulate probability forecasts from dynamical models. The forecast 

assimilation method (Stephenson et al., 2005) has proved that calibrated multi-model 

seasonal forecasts are more reliable and skilful than probability forecasts from a 

simple multi-model. This method has been coded using the R language and made 

available from: 

http://www.met.reading.ac.uk/cag/rclim/ 

to test its ability to formulate probabilistic seasonal forecasts of extreme events. 

 
Figure 1: (Top panel) December sea surface temperature (SST) over Niño3.4 (5° N-5° S 
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and 170° W-120° W) for the period 1959-2001. The vertical lines correspond to the 
eleven dates when the SST was found to be above the upper quartile, which is 
represented with a horizontal dotted line. (Bottom panel) Observed (blue bars, taken 
the value of one when the event verifies and zero otherwise) and forecast probability of 
the SST exceeding the upper quartile. The forecasts have been formulated using a 
simple multi-model (black bars) and forecast assimilation (red bars) methods. 
DEMETER seasonal hindcasts with three coupled models and nine ensemble members 
initialized on the 1st of August of each year have been used. The predictions have a 
lead time of five months. The climatological 0.25 value is shown with a horizontal 
dotted line. 

 
Figure 1 shows an example of probabilistic predictions of a variable exceeding 

the upper quartile. The variable is monthly mean December sea surface temperature 

(SST) averaged over the region in the equatorial Pacific known as Niño3.4 (5° N-5° S 

and 170° W-120° W). The predictions have been formulated using hindcasts from 

three models (ECMWF, Met Office and Météo-France) of the DEMETER experiment 

(Palmer et al., 2004). The hindcasts have been initialized on the 1st of August of each 

year, so that the predictions have a lead time of five months. The top panel displays 

the observed time series, with the vertical lines corresponding to the eleven dates 

when the SST was found to be above the upper quartile, represented by the horizontal 

dotted line. The lower panel shows the observed (one when the event verifies and zero 

otherwise) and forecast probability of the SST exceeding the upper quartile. The 

forecasts have been formulated using a simple multi-model (Hagedorn et al., 2005) 

and forecast assimilation methods. The simple multi-model predictions have been 

constructed by previously correcting the mean and variance biases of each individual 

model. Forecasts for which the forecast probability is above (below) the 

climatological 0.25 value (horizontal dotted line) when the event did (not) verify can 

be considered as correct. This happens in almost all cases with both sets of forecasts 

agreeing quite well with the observed probability, the number of correct rejections 

being outstanding. However, both formulations have a false alarm in 1976 and a miss 

in 1969. The reader should be reminded that a deterministic prediction would only 

provide yes/no forecasts, missing completely the richer information a probabilistic 

prediction provides. 
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Figure 2: As Figure 1, but for the 85th percentile. 

 
Figure 2 illustrates an example for the SSTs exceeding the 85th percentile. The 

event is observed in seven occasions (top panel), which clearly shows the reduction in 

sample size when the percentile defining the category is closer to the tail of the 

distribution. While the forecast probabilities still agree with the observed probability 

in most cases (lower panel), the number of false alarms has increased to two and four 

for the simple multi-model and the forecast assimilation, respectively. As a 

consequence of the relatively high number of false alarms, the user of the forecasts 

may feel inclined to hedge for more extreme events, which is a clearly undesirable 

option from a forecaster’s perspective (Thornes and Stephenson, 2001). 

Forecast assimilation has been considered here as a first step in the 

comparison, sample size permitting, with more adequate methods. A proper 

formulation of probability forecasts of extreme events requires a characterization of 

the tail of the joint distribution of the observations and forecasts (based e.g. on 

extreme value theory). 

To conclude this section, the role of the ensemble size is discussed. As 

extreme events have low-probability of occurrence by definition, most simulations 

might fail to reproduce them even given the right large-scale forcing. In this context, 
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ensemble size plays an important role in the detection of these events because a large 

ensemble size may allow for a better representation of the tails of the forecast 

probability distribution function. Optimal calibration and combination methods still 

need to be developed to assess the effect of ensemble size in the prediction of extreme 

events and to be able to extract the maximum information from the current small 

ensemble sizes. 

5. Forecast quality assessment of extreme event predictions 

Given the low-frequency of occurrence of extreme events, the assessment of 

the forecast quality requires both adequate methods that take into account their rarity 

and an analysis of the physical processes involved. As in the case of the formulation 

of the probability forecasts of extreme events, the forecast quality assessment process 

has to deal with small sample sizes. This means that, for some purposes, forecast 

quality assessment may be more meaningful for relatively-frequent, high-amplitude 

severe events (for instance events defined with the 75th percentile). Alternatively, 

under certain assumptions, it is expected that moderate extremes, for which there are 

larger samples, may be used to provide information about rarer extremes (C. Ferro, 

personal communication). 

Although there is a plethora of skill scores available, deliverable D5.4 

promotes the extreme dependency score and the odds ratio for the verification of 

extreme events and mentions some of their desirable characteristics, such as their 

consistency for categorical forecasts based on extreme percentiles and their lack of 

sensitivity to hedging. Given that this is a subject discussed in detail in D5.4, the 

reader is referred to that text for more information on this issue. 

6. Summary and challenges 

This document discusses a series of issues that need to be addressed for the 

formulation of probabilistic predictions of extreme events in s2d time scales. 

Specifically, we raise the need of further work in the following aspects: 

• Identification of relevant events, either from the climatological or the 

end-user perspective, and the use of this knowledge to make a 

classification of extreme events for these time scales. 
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• Analysis of the suitability of s2d forecast systems to simulate extreme 

events and assessment of the systematic error by comparing with the 

characteristics of the extreme events and their associated large-scale 

conditions in observational datasets. 

• Development of sound probabilistic models for the calibration and 

combination of dynamical forecasts to formulate predictions of 

extreme events. These models should help to determine minimum 

ensemble sizes for a skilful detection of the extreme event signal. 

• Development of forecast quality assessment methods specifically 

adapted to the rarity of the extreme events and to the small sample 

sizes available to determine whether there is any useful skill to predict 

these events and whether the skill is superior to that found for more 

frequent events. These tools should be used in the forecast quality 

assessment of extreme events with the stream 2 ENSEMBLES 

experiments. 

Although the document deals with predictions of climate, a close link to the 

developments carried out in the weather prediction community, where samples are 

sensibly larger than at the s2d time scale should be established. In this respect, the 

largely artificial distinction between climate and weather prediction is intended to 

disappear in the near future in a unified weather-climate forecast approach, leading to 

a so-called seamless suite of forecast products (Rodwell and Doblas-Reyes, 2006) 

applicable on all relevant decision making time and space scales. From the 

perspective of the users, the distinction between weather and climate forecasts is 

somewhat abstract and arbitrary. Users are concerned about certain weather or climate 

events. Hence, they require forecasts with particular lead-time ranges that usually do 

not correspond to either weather or climate scales. How these forecasts are produced 

is mostly out of their concern. If the users need forecasts with multiple lead-time 

ranges, for ease of use, these forecasts should preferably be framed in the same, 

probabilistic forecast format. A seamless suite should bridge the gap between weather 

and climate forecasting, leading to better understanding, improved forecast 

techniques, and more skilful and useful forecasts. 

Similarly, estimates of long-term change in climate extremes are available 

(e.g. Weisheimer and Palmer, 2005) and users of climate information are trying to 
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design adaptation strategies to cope with the risks. Given that long-term decisions 

made by most end users are made at the interannual time scale, adaptation to ongoing 

climate change can be achieved by training the end-user systems with climate forecast 

information from s2d predictions, which have the desirable property of being 

verifiable. Once again, the ENSEMBLES project offers a unique framework to 

investigate these possibilities. 
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